Ya se ha comentado que es posible acceder al tipo de un array NumPy mediante el parámetro dtype:
Los tipos existentes en NumPy reciben como nombre el tipo básico de datos que contienen, como int, float o complex, y, a continuación, un número indicando el número de bits por elemento.
En esta página de la documentación de NumPy encontramos el listado de tipos existentes:
Data type | Description |
---|---|
bool_ |
Boolean (True or False) stored as a byte |
int_ |
Default integer type (same as C long ; normally either int64 or int32 ) |
intc | Identical to C int (normally int32 or int64 ) |
intp | Integer used for indexing (same as C ssize_t ; normally either int32 or int64 ) |
int8 | Byte (-128 to 127) |
int16 | Integer (-32768 to 32767) |
int32 | Integer (-2147483648 to 2147483647) |
int64 | Integer (-9223372036854775808 to 9223372036854775807) |
uint8 | Unsigned integer (0 to 255) |
uint16 | Unsigned integer (0 to 65535) |
uint32 | Unsigned integer (0 to 4294967295) |
uint64 | Unsigned integer (0 to 18446744073709551615) |
float_ |
Shorthand for float64 . |
float16 | Half precision float: sign bit, 5 bits exponent, 10 bits mantissa |
float32 | Single precision float: sign bit, 8 bits exponent, 23 bits mantissa |
float64 | Double precision float: sign bit, 11 bits exponent, 52 bits mantissa |
complex_ |
Shorthand for complex128 . |
complex64 | Complex number, represented by two 32-bit floats (real and imaginary components) |
complex128 | Complex number, represented by two 64-bit floats (real and imaginary components) |